
Conformal Field Theory and Gravity
Solutions to Problem Set 4 Fall 2024

1. Large-N gauge theory

(a) We can find expectations through

〈O(x1)...O(xn)〉 =
1

Z

(−1)n

Nn

δnZ[J ]

δJ(x1)...δJ(xn)

∣∣∣∣
J=0

(1)

The diagrammatic expansion of Z[J ] now contains new vertices. However, as we
saw in the previous exercise, the number edges meeting at each interactions vertex
does not affect the power of N in the scaling of the diagram. Let us now consider
the generator of connected diagrams (this will allow us to only reason in terms of
single bubble diagrams, and not disconnected contributions)

W [J ] = logZ[J ] = S0[J ] + S1[J ] + ... (2)

where Sn denotes the sum of connected bubble diagrams with genus n. Hence, if
we use the scaling determined in the previous question:

W [J ] = N2F0[J, λ] +N0F1[J, λ] +O(N−2) (3)

where the dominant contribution corresponds to planar diagrams.

(b) The connected two point function is given by

〈O(x1)O(x2)〉conn =
1

N2

δ2W [J ]

δJ(x1)δJ(x2)

∣∣∣∣
J=0

=
δ2F0[J, λ]

δJ(x1)δJ(x2)

∣∣∣∣
J=0

+O(N−2) (4)

The disconnected part of the two-point function is

〈O(x1)O(x2)〉disc = 〈O(x1)〉〈O(x2)〉 = N2 δF0[J, λ]

δJ(x1)

δF0[J, λ]

δJ(x2)

∣∣∣∣
J=0

+O(N0) (5)

Hence
〈O(x1)O(x2)〉conn
〈O(x1)〉〈O(x2)〉

∼ N−2 (6)

(c) Using 1, the functional derivatives bring down the highest power of N when they
all act on the factor of exp{N2F0[Ji]}.
Therefore, we get

〈O(x1)...O(xn)〉 =
(−1)n

Nn

∏
j

δ(N2F0[Ji])

δJj

∣∣∣∣
Ji=0

(1+O(N−2)) =
∏
i

〈Oi〉(1+O(N−2))

(7)
If n does not stay finite but grows with N , then the number of non-planar diagrams
also grows with N , therefore this counting breaks since from simple combinatoric
arguments there are many more non-planar than planar diagrams for large N .
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(d) Now we have

〈Õi〉 ∼
δ(F0[J̃i])

δJ̃j

∣∣∣∣
J̃i=0

= 0 (8)

Since F0 is the only term in the exponent of Z multiplied by a positive power of
N , the highest power of N is obtained by bringing down the largest number of F0

factors. However, now at least two derivatives need to act on F0 in order to get
a non-vanishing expression. In fact, the largest contribution arises when there are
exactly two derivatives acting on each F0. Using the fact that 〈ÕiÕj〉 = δ2F0[J̃ ]

δJ̃iδJ̃j
, we

get

〈
∏
i

Õi〉 =
1

Nn

Wick∏
i<j

N2 δ
2F0[J̃ ]

δJ̃iδJ̃j

∣∣∣∣
J̃=0

(1 +O(N−2)) =
Wick∏
i<j

〈ÕiÕj〉(1 +O(N−2)) (9)

where the
∏Wick

i<j ensures all possible indices are considered exactly once. Note that
if n is odd then correlations go to 0 for large N .

2. Polyakov action and Virasoro modes

(a) Begin with the action

S[X, e] =
1

2

∫
dτ(e−1Ẋ2 − em2) (10)

By the Euler-Lagrange equations for e

d

dτ

(
∂L
∂ė

)
− ∂L

∂e
= e−2Ẋ2 +m2 = 0 (11)

The conjugate momentum is given by

pµ =
∂

∂Ẋµ
= e−1Ẋµ (12)

Thus, the equation of motion is simply the mass-shell condition p2 +m2 = 0. For
timelike vector Ẋ2 < 0, we solve for e

e =
1

m

√
−Ẋ2 (13)

Inserting it back in the action gives

S[X] = −m

∫
dτ

√
−Ẋ2 (14)

(b) Varying with respect to gµν as one usually does in GR, we obtain that

∂L
∂gαβ

=
√
−g∂αX

µ∂βX
νηµν −

1

2

√
−ggαβ(g

γδ∂γX
µ∂δX

νηµν − (p− 1)) = 0 (15)
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This can be written as

γαβ −
1

2
gαβ(g

γδγγδ − (p− 1)) = 0 (16)

Contracting with gαβ and noting that gαβgαβ = p+ 1, we obtain

1− p

2
gαβγαβ = −(p+ 1)(p− 1)

2
(17)

or equivalently
gαβγαβ = p+ 1 (18)

Plugging this into (16), we have

gαβ = γαβ (19)

so that

S = −T

2

∫
dp+1σ

√
− det γ((p+ 1)− (p− 1)) = −T

∫
dp+1σ

√
− det γ (20)

(c) From the mode expansion we obtain that

∂−X
µ =

√
α′

2

∑
n∈Z

αµ
ne

−inσ− (21)

where we used αµ
0 = α̃µ

0 =
√

α′

2
pµ. Then we can write T−−(σ

−) as

T−−(σ
−) = −1

2

∑
m,n∈Z

(αm · αn)e
−i(m+n)σ− (22)

The story for T++ is similar by exchanging σ− → σ+ and αµ
m → α̃µ

m. The `n are
computing using

`n = − 1

2π

∫ 2π

0

dσT−−(σ)e
−inσ =

1

4π

∑
m,p∈Z

(αm · αp)

∫
dσei(m+p−n)σ

=
1

2

∑
m∈Z

αm · αn−m

(23)

Similarily,
˜̀
n =

1

2

∑
m∈Z

(α̃m · α̃n−m) (24)

(d) Using the Poisson bracket relation,

{`m, αµ
n} =

1

2

∑
p∈Z

{αp · αm−p, α
µ
n} =

1

2

∑
p∈Z

ηνρ(α
ν
p{α

ρ
m−p, α

µ
n}+ {αν

p , α
µ
n}α

ρ
m−p)

= − i

2

∑
p∈Z

ηνρ((m− p)ηρµαν
pδm−p+n,0 + pηνµαρ

m−pδp+n,0)

= − i

2
(−nαµ

m+n − nαµ
m+n) = inαµ

m+n

(25)
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Thus

{`m, `n} =
1

2

∑
p∈Z

ηµν(α
µ
n−p{`m, αν

p}+ {`m, αµ
n−p}αν

p)

=
i

2

∑
p∈Z

ηµν(pα
µ
n−pα

ν
m+p + (n− p)αµ

m+n−pα
ν
p)

=
i

2

∑
p∈Z

ηµν((p−m)αµ
m+n−pα

ν
p + (n− p)αµ

m+n−pα
ν
p)

=
i

2
(n−m)

∑
p∈Z

(αm+n−p · αp) = −i(m− n)`m+n

(26)
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